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oABSTRACT

In order to determine the Fourier transform of a quasi-periodic time

series (linear problem), or the power spectrum of a stationary random

time series (quadratic problem), it is desirable that data be recorded

without interruption over a long time interval. In practice, this may

not be possible. The effect of regular interruption such as the day/

night cycle is well known. We here investigate the effect of irregular

interruption of data collection (the Areakingi of the window function)

with the simplifying assumption that there is a uniform probability %I

that each interval of length 4 , of the total interval of length T - NT,

yields no data..

For the linear, case we find that the noise-to-signal ratio will

have a (one-sigma) value less than c if N exceeds p (1- p)e

For the quadratic case, the same requirement is met by the less restric-

tive requirement that N exceed p- (l-p)E- .

It appears that, if four observatories spaced around the earth were

to operate for 25 days, each for six hours a day (N - 100), and if the

probability of cloud cover at any site on any day is 20% (p - 0.8),

the r.m.s. noise-to-signal ratio is 0.25% for frequencies displaced

from a sharp strong signal by 15 pHz. The noise-to-signal ratio drops

off rapidly if the frequency offset exceeds 15 pHz.



EXAMINATION OF TIME SERIES THROUGH RANDOMLY BROKEN WINDOWS

I. INTRODUCTION

In many astrophysical problems one is concerned with the study of

time series. It often happens that the property of particular interest

* "is the spectrum of the time series. In principle, one may determine a

time series to a prescribed accuracy by making measurements, without

interruption, over a sufficiently long time interval. In practice, the

length of time over which the variables may be measured will be limited.

Moreover, measurements may necessarily be interrupted (or otherwise impaired)

for one reason or another. The relationship of the spectrum determined

by limited, interrupted measurements to the intrinsic spectrum has been

the subject of many investigations, as recently reviewed by Deeming (1975).

If the original time series is denoted by x(t), one may regard the

measurements y(t) as being determined by

'4y(t) f(t) x(t), (1.1)

where f(t) is the "window function." We regard x, y and f as being simple

scalar functions but the procedure may be generalized to replace x, y by

vectors and f by a tensor.

We use the Fourier transform notation

X(t) fd w e- i&Jt i(w) (1.2)

* -dft = t x(t) (1.3)

where the limits of integration are to be taken to be - to + if other

limits are not explicitly specified.
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If we are interested in determining i(w), the Fourier transform of

the time series x(t), then we may use the relation

YM¢o = fdW' ?W ) i(w - W') (1.4)

to relate the Fourier transform of the measured time series y(t) to that

of the original time series x(t).

We are interested in the possibility that f(t) may be regarded as a

random variable, expressible as

f(t) - F(t;l,La2 ,...,ctN) , (1.5)

where l 2,...*N are independent random variables with specified expec-

tation distributions. By the central limit theorem (Papoulis, 1965), we

expect that the random variable f (or its Fourier transform f) will have

a distribution approximately Gaussian in form if N is not a small number,

so that an adequate representation of f would be given by its mean < f>

and its standard deviation o(f).

If, on the other hand, x(t) is a random time series, we will be

concerned with the autocorrelation function R x(t, defined by

SR x(t) - <x(t') x(t'+t)> , (1.6)
x

and the power spectrum of the time series, defined as the Fourier transform

of R (t):

(t) mfdw ei~ts (S), (1.7)

Sx( - 1 jdteit R(t). (1.8)
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On noting that

- S() d(6+)') (1.9)

and evaluating <i( ) ( ')>, we may verify that

S (Wi) - f ' w(O') S(-c') (1.10)

where

~~W(N) - (W) f(-W).(.i

*Clearly the function w(w) represents the capability of the measurement

process, described by the "window function" f(t), to determine the power

spectrum S (M). The function w(w) may be expressed in terms of the inde-

pendent random variables

WWm) - W(;al,ca2,...,aN). (1.12)

Once again, unless N is a small number, we expect that the distribution

of w will be approximately Gaussian so that it may be characterized by

its mean value <w> and standard deviation o(w).

This article was prompted by a problem related to the determination

of normal modes of oscillation of the sun, as determined by measurement of

the photospheric velocity field. Measurements have been presented by

Deubner (1975) and by Rhodes et al. (1977), and their theoretical inter-

pretation discussed by Ulrich and Rhodes (1977) and by Ulrich et al. (1978).

For optimum determination of the power spectrum of the velocity field

(expressed as a function of wave number), it is clearly desirable to make

observations without interpretation over as long an interval as possible.

Away from polar regions, observations from a single station are interrupted
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by the day-night cycle which leads to unacceptable aliasing of the data.

Observations made from a spacecraft in polar orbit would obviously yield

un-aliased data of higher quality and higher frequency resolution. Obser-

vations made from the south pole during austral midsummer can lead to

several days of uninterrupted observation and to still longer intervals

with occasional, irregular interruption. It is also possible to select

three or four stations around the earth which, in the absence of any cloud

cover, could give continual coverage of the sun for many weeks. However,

one must anticipate that some of the data would be lost by cloud cover.

It is clearly desirable that one should be able to make some esti-

mate of the accuracy with which oscillation modes may be determined when

4it appears possible to observe the sun over a long interval of time losing

some blocks of time because of cloud cover. The purpose of this article

is to develop a model which enables us to address problems of this type.

After presenting a few general formulas, we shall simplify the problem

considerably by supposing that observations are made over a large number

N of equal time intervals, each of length T, so that the total time

interval T is given by

T - NT. (1.13)

With certain additional simplifying assumptions, we shall consider the

statistical properties of the functions f(w) and w(w) which are repre-

sentative of "randomly broken" window functions.
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II. MATHEMATICAL MODEL

In the case that the window function f(t) is expressible in the form

(1.5), in terms of a number of random variables, we wish to study the distri-

bution of the functions f(w), w(w), entering equations (1.4) and (1.10).

We suppose that the distribution of the variables a to aN is given by
1 a

the probability function P(al, ..., aN ) such that P(al, ..., aN)dal ..., daN

is the probability of finding a1 in the range a1 to al+dal, etc. Then the

* expectation value of the quantity f(w) is given by

<f(U)> Jda PN(a) F(c;al,...,aN), (2.1)

where d Na denotes dal..., daN, and PN(a) denotes P(al, ... , aN). If we

use the following notation for the variance of a complex variable of a

complex variable z,

0 2 (z) - 02(Zr) + a 2 (zi), (2.2)

where zr and zi are the real and imaginary parts of z, then noting that

f(- w) is the complex conjugate of f(w), we see that

_ . 2 ( ))<() ()> <i()<(_) (2.3)

The first term on the right-hand side may be evaluated from

<w(w)> =< (N) f (-)>- a PN(a)F(,w;al,...,aN) F(-w; a,...,aN)

We see that equation (2.4) also gives the expectation value of the

"window spectrum" w(w) which appears in equation (1.10) and is appropriate

for the discussion of stationary random time series. The variance of this

function is given by

a 2(w) - <w(w) w (-W)> - <w(w)> <w(-W )> (2.5)
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where

<w(,,) w(- W)> -fdN PN(A) (W;a 1 ... ,4 W(-, aI, ... ,.) (2.6)

As indicated in the introduction, we intend to consider the case that

the observing time t 0 to tN, of length T, is divided into N equal intervals

bounded by times tl, t2, ... where

t. M t + nT (2.7)n4 0

so that we may adopt the form

4N

F(t;al, .. aN) - E an  h(t- 
- h (t - t

)  (2.8)
N n 1n-~n-l

* " where h(t) is the Heavyside function:

h(t) - 0 if t<Oj, I (2.9)
M 1 if t >0.

We also assume that the intervals are statistically independent, so that

we may write

PN(M)dA P(al, ... , )dal, ... , daN - h1  da4...PN(cN)dcNI. (2.10)

If we assume that, for each interval, there is a (uniform) probability p

that the window is open and probability i-p that it is closed, then

P(a ) - p 6 (a n -l) + (1-p) 6 (an) . (2.11)

In evaluating <f(w)), given by (2.1), we will use

< n> - p. (2.12)

In evaluating the quantity given by equation (2.4), we will need to

evaluate (a an, which is clearly given by p2 if m n but by p if m - n.
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Hence

< ma n> p2  2 P P 6m (2.13)

where 6 m is the Kronecker function. In evaluating the quantity given

by (2.6), we need to evaluate the expectation value of a ma na pa . By con-

sidering the various possibilities (m,n,p,q all different: two of them

'41tthe same, ec)we find that

<a a a a > -p 4+ (p 3- p 4(M + 6 + 6 + 6 + 6 +6 )m np q mn up mq np nq pq

+ ( 3p3 +2p( +6 + 6 + 6 )
npq mpq mnq mnp

+(p - 4p' + 6p' - 3p 6 pq (2.14)

where 6 I if m -n -p otherwise 0, and 6 is defined similarly.
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III. EVALUATION OF MODEL

For simple (non-random) time series, equation (1.4) gives the relation-

ship between the Fourier transforms of the original and measured time series.

In this context, the properties of the random window function f(t) may be

characterized by <f( )> and a2(6).

On substituting the form (2.8) into (1.5), we find that

n..., 0 a n , sin(1T e to + ( (3.1)

On using (2.1) and (2.12), we obtain
• 1

2 iW(t +t N )

2ir Tp sinc(! w T) e , (3.2)

where sinc e sin 0.

On using (2.4), we find that

<w(w)>- (1)2 T 2 [p2sinc2 ( LT) + N-Zp(- p)snc2( WT)] (3.3)

Hence, using (2.3), we obtain

c2() ()2T 2 N1 p(l - p) since(~ a) (3.4)

For evaluating the effects of "breaking" of the window function, it

is convenient to normalize the standard deviation with respect to the maxi-

mum value of f(cu), which is the value at w = 0. Accordingly, we introduce

the definition

z (  = <(0)>(3.5)
< (o)>

For the case under consideration, this has the form

E-(W) -N1/2 -1/2 1/2 si .1 I

1 r ~ P) sc- it (3.6)
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For discussion of the properties of randomly broken windows in the

study of stationary random time series, it is necessary to evaluate the

mean value and standard deviation of w(W). The former is given by equa-

tion (3.3). The first term inside the brackets has the same form as arises

in the non-random case (p = 1). The second term represents a change in the

mean spectrum, so it is convenient to introduce the symbol A2  for the

ratio of the additional term to the maximum value of the principal term:

12 N -1 p-1 (l-p) sinc (- 3) (3.7)

On writing equation (2.6) in the simpler form

<w(ol)w(- o)> =<F(w;a)F(w;a)F(-w ; a)F(- w; a)> (3.8)

and using equations (1.3) and (2.8), we see that

< (O)w(-W)> (7~4~ < (it - eiwtm-1) (ei~t n e eiWtn1)

x( e-
i t p - e -itp-I)( iCtq - eiitq-1) (3.9)

On using equation (2.14), we see that this may be expressed in the form

<w( )w(-)> _ 1 ip4 E1 + (p 3_p 4)(E2+E .+ 4E3
(2 T ) 4 L2 3

+ 2(p - 3p3 + 2p4)(E 4 + E*) (3.10)

+ (p - 4p2 + 6p3 - 3p4) E

where
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E1 - t (e i o  itM- 1)4I

2 
12

(e Iit )c IIIo (e -- °- 2

4 i

mn'44 ~E5 4 (e it m -e i~~tl) ( *i Wt n e't -)e-C -e ni-i)-1

*On evaluating these sums, we find that

m% n

E1 = 16 sin 4 (lwT+

16 sin 2 sin j sincT2 sinwT

16 N sin 2(1W ) sin 2(jcr WT (3.12)

216 sin22(1.Gsin2(L (OT)

E5 - 16 N sin 1 .

Hence equation (3.10)is found to be expressible as

10
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<w () -W) T( p4 a sinc 4 (.1 W)

+ 2(p 3 p 4 )N- 2 s inc 2(.1i n (.~1 WT) sincwT

+4(p 3-p ) N' s inc 2 wT) a inc3_4(12(.L w T

+ 4 P 3 P3 + 2P4) N- sinc % T ic2.

*+ (p - 4p 2 + 6p 3 -3p 
4 )Ng3 sic4_ . (3.13)

On using equations (2.3) and the definition

a (w M)
E 2 Vc) 1 (3.14)

2(rTp)2

we find that

2U 12 N 1p 1(1-p) sinc -?~T) sinc 2.

+ 2N-2 P 1 (1p sin2(.1 wT si2 (.L W) si
2 2 sinCWT

+N-2 P-2 (3 - 10p, + 7p 2  sinc 2(.L W sinc 2(cL WT)

+N -3 P 3 (1 - 4p + 6p 2 -3p 
3)sn 12W) (3.15)

.- MIMMI~ibe11



IV. DISCUSSION

We see from the preceding section that the effect of a random "break-

ing" of the window function is to produce an aliasing of any signal. This

effect is described by the function E1 or by A2 and Z 2 as given by equa-

tions (3.6), (3.7) and (3.15).

For the "linear" problem, as described by equation (1.4) the mean

Fourier transform of the window function, as given by equation (3.2),

has the same form as it does in the non-random case, although it is

reduced by a factor p. The standard deviation is characterized by Elf

defined by equation (3.5) and given by equation (3.6).

It is convenient to introduce the notation

'T - 2T-  a)T - 2T (4.1)

On noting that sin e O< 1 forO <1, and that Isinc 1 < - for 6 >, 1,

we see that El S where

1= N/2p-1/2( 1/p)I/2 T(

SI(c ) N-/2p-I2(1-p)I/2( T/W) ' T > . 14"

Hence the aliasing is most severe within the range of a few times w of

the strongest signal.

We may infer from the above restriction the minimum number N1 of

intervals necessary to ensure that E 1 is below an assigned level c for a

given value of p.

We see from (4.2) that we require N > N1 where

N1 - (l-p)p-lI - 2 .  (4.3)

12
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If, for instance, p - 0.8 and we require that E < 0.05, N must be at

least 100.

For the "quadratic" problem in which we are determining the spectrum

of a stationary random time series, the aliasing is described by the

functions A2 (o) and Z2( ca) given by equations (3.7) and (3.15).

We see from equation (3.3) that the second term in brackets is smaller

than the envelope of the first term, and so may be neglected, for w <

where

1A = Nl/2 (l1p)/2p-/2 (4.4)
wA NT (4.4)O

For w > ca the second term produces a "tail" to the principal contribu-

tion to <w()> . By an argument similar to that leading to equation (4.2),

we find that A2  D 2' where

D 2M I -lp-l(l-p) , < WTo
(4.5)

-1 -1 2
D 2(w) N p (-p)(T /W) , > WT

Now consider the four terms in the second bracket in equation (3.15).

It is clear that the third term may be ignored by comparison with the first

since it has a similar dependence on 6 but includes an extra factor N
-1

The second term may also be ignored by comparison with the first- the

extra factor N-1 (sin wT)/(sin w-r)has a maximum value of unity, and an

RMS value of order of N-112 .

In comparing the fourth term by comparison to the first, we see that

the ratio is given by

2 1

R -Q(P p sinc (wT) (4.6)
N s inc 2WI T)

3N2 sinc2(1w)

13



where

Q(p) - 1-3p 2 (4.7)
2p 

2

It is easily verified that Q(p) t 0.5 in the range 0.5 < p < 1. Hence

F R has a maximum value of order 0.5 at values of . for which wT - 2nn. We

find that, when R is averaged over frequency, it varies with N as N- I .

Hence we may, to sufficient approximation ignore the fourth term and so

replace (3.15) by

* E(w)~ 1/2 1/2 1/2 1/2
2w N- p (l '-~ IP)( sT1 nc2' 1. (4.8)

We find that r < S where
2 S2'

S2(w ) - 21/2N-1/ 2 p-1/2(1_p)1/2, W )
S~- M -T 2a •/ r/ P-/ (1- /2' (4.9)

We see that, for the same values of N and p, the maximum value of 2 is

2 2

1/2

21/2 times larger than the maximum value of E l' Hence the minimum number

N2 of intervals necessary to ensure that E2 is below an assigned level,

for various values of p, is twice the corresponding value of N1, given by

equation (4.3).

qowever, the quadratic case is more complicated than the linear case

in that Z (2) is more complicated than E1((w), and A2( ) is nonzero (whereas

a I( M is zero and has been neglected).
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Or. noting that the dominant term of (3.3) (that which survives in the

2
nonrandom case that p a 1) varies as (wT/W) for w > wT9 we see that E2( )

is less than the tail of the dominant term, and so may be neglected, for

ck < wZ , whe.

w 2-1/2N1/2p 1/2 (0-p1/2 " (4.10)

On the other hand, we find that S () is less than D (M) for w > wc, where
2 2

1/2N1/2 1/2 -1/2
S- 21N p (l-p)- T - 2wz (4.11)

Hence we may, to adequate approximation, ignore E () in assessing the

aliasing which occurs in the quadratic case.

We see from (4.5) that the minimum value of N necessary to ensure

that A2 ( ) is less than some maximum value E is given by N > N2, where

N -2  p (1-p)c (4.12)

We see from (4.3) that N2 is smaller than N1 by the factor E. Hence

aliasing is likely to be less serious in the quadratic case than it is in

the linear case.

In order to assess the implications of the present model concerning

ground-based observations of solar oscillations, one will need 
to have

detailed estimates of the expected spectrum (in particular, 
the spacing

and relative power of nearby lines) and the expected cloud 
cover at three

or four observatories positioned round the world. It is also desirable

that the present model should be extended by considering separate 
values

of p for each of the observatories, and possibly by taking into account

the correlation between cloud cover on consecutive days.
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Nevertheless, we can illustrate the results of this model by consider-

ing a hypothetical situation. Suppose that four observatories are located

around the world in such a way as to give continuous coverage (in the

absence of cloud cover), and that these observatories are operated for 25

days. Then N - 100. Suppose that, for any observatory on any day, there

is 20% probability of cloud cover so that p - 0.80. We find from (4.1)

that (using v - w/21), v T = 151 Hz. For frequencies less than this value,

(4.5) shows that the aliasing amounts to 0.25% or less. For frequencies

above Mi Hz, the aliasing drops off rapidly.

Although it will be necessary to make more detailed and specific

calculations to draw definite conclusions, it appears from the above simple

example that it may be possible to carry out high-quality studies of solar

oscillations from a chain of ground-based observatories.

This work was supported in part by NASA Grant NGL 05-020-272, Office

of Naval Research Contract N00014-75-C-0673, and the Max C. Fleischuann

Foundation.
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